PGMT/GUI help

Processing
Graph Method
- GUI
Handbook

License
Glossary

Introduction

. Introduction to the
GUI
. How to create a

new graph
specification?

Working with Graph
State Files

. Creating anew
GSF

. Opening a GSF

. Closing the current
GSF

. Saving the current
GUI graph

. Saving the current
GUI graphina
GSF in auser-
specified directory

. Opening arecent
GSF

. Exiting the GUI

Forms - general notes

. Buttons OK
Cancel, Apply,
Validate Form,
Print

. Non-editable fields

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/ (1 of 3) [7/19/2002 4:50:19 PM]

PGMT/GUI help

and forms
. Tables
. Family Treetables
. Typenames
. Nested strings
. Printing forms

Icon and Arc Forms

. lcon Protype Form
. lcon Cal Form

. lcon Arc Form

. Arc Form

Exterior Forms

. Protype Form
. Port Association

Form
. Banner Form
. Typelist Form
. Included Graph
List Form

Editing

. Editing forms
. Editing graphic
elements

Validation

. Validating forms

. Validating the
graph

Trandation
. Translation

Miscellaneous

. Batch execution

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/ (2 of 3) [7/19/2002 4:50:19 PM]

PGMT/GUI help

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/ (3 of 3) [7/19/2002 4:50:19 PM]

License

Processing Graph Method - GUI
Handbook

by
Michal Iglewski

July 17, 2002

The Processing Graph Method Tool (PGMT) product is being released under the GNU General Public License Version 2,
June 1991 and related documentation under the GNU Free Documentation License Version 1.1, March 2000.

http://www.gnu.org/licenses/gpl .html

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/license.html [7/19/2002 4:50:21 PM]

http://www.gnu.org/licenses/gpl.html

Glossary

Glossary

Expression

An expression according to the rules of the programming language supported by PGMT, i.e., C++.
Operands may be literal numbers, variable names, indexed arrays, and function calls.

L eaf
A family with height being O.
Full path
The full path of afile. InaUnix file system, the directory separator isaslash'/'.
NestedString
An aggregate used to denote a family.
Parsing tree
GUI memory, i.e., theinternal data structures of the GUI graph.
Type name

A type nameis aname of either alanguage-defined type or a user-defined type. The language currently
supported by PGMT is C++. In C++, language-defined type names differ from variable names and can be
composed of several names like unsigned int, long double, etc.

A user-defined type name is a single name. The corresponding type is defined in one of the filesin the

Type List.
User -defined data type (or user-defined class)

A datatype (or class) defined in the target language (C++). A PGM user can define a base type for a PGM
family by creating a C++ class and in the case of templated classes, by providing atype definition
(typedef) for each distinct instantiation of the templated class.

Variable name

Name used to denote one of the following entities: prototype, icon family, port family, index, formal type
argument, formal mode argument, formal GIP, user-defined type.

Thefirst character is alpha, and each subsequent character is either alphanumeric or an underscore. No
embedded blanks are allowed.

http://w3.ugah.uquebec.ca/iglewski/AlT/GUl/last/pgmtHelp/guihelp/glossary.html [7/19/2002 4:50:22 PM]

Introduction

| ntroduction

| ntroduction tothe PGM T/GUI

This document describes the Graphic User Interface (GUI) of the Processing Graph Method Tool (PGMT).

In the following, we refer to the human using the GUI as the user, and a GUI session refers to the editing of a GUI graph.

While the user is editing the GUI graph, the internal data structures in the GUI memory are called the parse tree. The user
may elect to save the GUI graph in afile, called the Graph State File, or GS-. After saving the GUI graph in a GSF, the
user may start anew GUI session and open the previously saved GSF. The state of the parse tree and the information
presented to the user are identical to what they were when the GUI graph was saved.

How to create a new graph specification

Building the graph consists of placing and connecting the icons of the data flow graph on the screen and filling out forms
describing the icons and their interconnections. The entire process can be done in one or more sessions.

The specific actions are usually executed in the following order:

creating a new Graph or opening an existing Graph State File,
filling out the Banner Form,

filling out the list of user-defined data types used in the Graph,
filling out the list of graph prototypes used in the Graph,
filling out Prototype Form for the graph,

defining User-specific Node Prototypes,

placing Icons on the Screen,

filling out Icon Forms,

connecting Icons with Arcs,

filling out Arc Forms,

. connecting the Graph Exterior to Ports in the Graph,

. validating the Graph Specification,

. generating C++ code,

. exiting the GUI.

© Nk owDdRE

e el e =
A WNRERO

Anytime during this process, the user can save the Graph.

Placing I cons on the Graph

The user places the icons (transitions, places, and/or included graphs) in the graph screen window. The user first selects
from the tool the type of icon that is to be placed on the screen by clicking with the left mouse button the corresponding
icon on the tool bar, or if the tool bar is hidden, by selecting the corresponding icon from the Nodes Menu.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/intro.html (1 of 3) [7/19/2002 4:50:24 PM]

Introduction

— PeGaS5Y5 — PGM2 Graphing 5Y5tem o
File Prototypes Exterior Translation Action Nodes Help

nEEENNIEE

Hode

The meaning of iconsis defined by the following table:

Select icon

D Transition icon
<:> Placeicon

Included Graph icon

\ Arcicon
—\X\ Arc bendsicon

The arrow icon changes into a small dark icon whose shape is the same as the icon to be placed on the screen. The user
then moves the icon to the desired place on the screen and left clicksto place it on the screen. This procedure is repeated
until all of the icons for the graph are placed on the screen. If a user wishesto delete an icon, the select icon (the left most
button on the toolbar) is chosen and the user left clicks on the icon to be removed (the icon will turn red when it is
selected). Theicon isremoved by clicking on the delete button (scissors) on the tool bar. Once all of the tokens have been

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/intro.html (2 of 3) [7/19/2002 4:50:24 PM]

Introduction

placed on the screen the user should return to select mode by left clicking on the toolbar select button.

For more information about placing and connecting the icons on the screen, go to Editing Graphic Elements, and for more
information about filling out forms, go to Editing Forms.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/intro.html (3 of 3) [7/19/2002 4:50:24 PM]

Working with Graph State Files

Working with Graph State Files

Start a new session

To start anew session, select NEW from the Files menu. The GUI graph isinitially blank.

Createa new GSF

To create anew GSF, select NEW from the Files menu. This opens a new empty graph with the Graph Class Name being
New (or Newn if the files New.gsf, NewO0.gsf, New1.gsf,..., Newn-1.gsf already exist in the current directory).

Open a GSF

To open an existing GSF, select OPEN from the Files menu.

When opening an existing GSF, the GUI verifies that the stem of the file name is the same as the Prototype Name in the
Prototype Form. If they are different, the GUI informs the user and suggests to change the Prototype Name to the stem of
the file name.

The file name in the banner is always set to the name of the opened file.

Only one GSF can be opened at time. If any changes have been made to the GUI graph since it was last saved, the GUI
asks the user whether to save it before opening anew file.

Closethecurrent GSF

To close the current GSF, close all editable forms and select CLOSE from the Files menu.

If any changes have been made to the GUI graph since it was last saved, the GUI asks the user whether to save it before
closing.

Savethe current GUI Graph

To save the current GUI Graph in a GSF, close al editable forms and select SAVE from the Files menu.

The file name of the GSF will be the Graph Class Name (specified by the user in the Prototype Name in the Graph
Prototype Form) appended with extension ".gsf".

The GUI Graph is saved in a GSF in the format specified by the GSF Specification.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/files.html (1 of 2) [7/19/2002 4:50:25 PM]

Working with Graph State Files

Savethecurrent GUI Graph in a GSF in a user-specified directory

To save the current GUI Graph in a GSF in a specific directory, close all editable forms and select SAVE AS from the
Files menu.

The file name of the GSF will be the Graph Class Name (specified by the user in the Prototype Name in the Graph
Prototype Form) appended with extension ".gsf".

Open arecent GSF

To reopen arecently edited GSF, close all editable forms and select the file from the Recent Files sub-menu of Files menu.
The sub-menu contains the list of files edited in this session.

If any changes have been made to the GUI graph since it was last saved, the GUI asks the user whether to save it before
closing.

Exit the GUI

To end the current session, close all editable forms and select EXIT from the Files menu.

If any changes have been made to the GUI graph since it was last saved, the GUI asks the user whether to save it before
exiting.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/files.html (2 of 2) [7/19/2002 4:50:25 PM]

Forms - general notes

Forms- General Notes

All forms associated with the graph are opened by selection from the Exterior Menu and they are discussed in Exterior
Forms section. The forms for icons and arcs are opened by pointing at an icon or and an arc, and pressing the right mouse
button. They are discussed in Icon and Arc Forms section.

Buttons OK, Cancel, Apply, Validate Form, Print

Every form has the buttons OK and Print, and possibly some of the following buttons: Apply, Cancel, Validate Form,
Open Body, Read File. The Print button is used to send the form to a printer, or to print it to afile. The meaning of other
buttons depends on the kind of the form and on whether the form is editable or not.

If the form is editable, then it usually contains the buttons Apply and Cancel. When the user clicks on one of these buttons,
the following respective actions occur:

. Apply: Perform the syntax check of every field in the form and report all errorsto the user. The form does not have
to be completed; blank fields are acceptable. If there are no errors, update the parse tree in memory to incorporate
changes made in the form.

. OK: Perform the actions described for Apply and then close the form.

. Cancel: Close the form without checking against the syntax rules and without making any changesto the parse
tree in memory.

If the form is non-editable, clicking on the OK button closes the form.

Two of the following forms, Family Tree table, Transition Statement, may be editable and do not contain the OK and
Apply buttons. To incorporate the changes made to such aform, the user should close it, and click either the OK or Apply
button on the respective mother form.

Some of the editable forms contain the Validate Form button. If the user clicks on this button, the GUI perform the local
semantics check of every field in the form and report all errorsto the user. Note that the full semantics checks are made
when the user selects "Validate Graph" in the Tranglation Menu.

The Open Body button is used by Transition Prototype Forms and the Read File button is only used by the Transition
Statement Form.

Non-editable fields and forms

In many situations, afield contains the information that is obtained from other fields in the same form or from other forms.
In al such situations, the field itself cannot be editable and to attract the user's attention, the field background is of
different, yellow/orange color.

Example:

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/formsGeneral.html (1 of 5) [7/19/2002 4:50:28 PM]

Forms - general notes

- PCMT]

Call Formn

lzon Farmily Mame: wildOne

Frototype Hame: PassOn

lcon Farmily Tree

add Index Lowear bound Upper bound
k 1 breadth

Actual Type Argurents

Formal Type Base Type
T char

Actual Mode Argumernts

Formal Height Actual Height Formal Base Type Actual Base Type

Actual GIF Bindings

Formal &IP | Family Tree Yalue
hrow_mide O Fiz Famiby Tree 2 " wmidth
how_long O Fiz Farmiby Tree length

Imitial “alue

Queus Taken Inde:: Levser Bound: UpperBound:
Index Lowear bound Upper bound
“Walue:

Gk | Cancel || Apply || Walidate Form || Prit |

The user cannot edit two different forms at the same time. If one of the formsis being already edited, the user will not be
allowed to open another form for editing purposes. However, in many situations, the user will be allowed to consult one or
more forms at the same time. All fields in the forms being consulted will be of different yellow/orange color. There is one
exception to thisrule. If the form being consulted contains afield with a button to open another form, the field background
is of white color but all fields in the associated form will be of yellow/orange color.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/formsGeneral.html (2 of 5) [7/19/2002 4:50:28 PM]

Forms - general notes

Example:
Cuatput Ports
F arnity Narne Categony Token Ht Base Type | Farnity Tree
passCut transition 2 T [Ex=p Farniby ...
feedBackQut transition] unsigned int O E=p Farniby ...
Tables

Filling out some of the forms requires the construction of tables where the number of rowsin the table is application
dependent. A table with afixed number of rowsis called afixed table. A table with variable number of rowsis called an
expandable table.

The addition and deletion of rows to atable are performed by the use of the add and del buttons located on the left hand
side of the table.

To select afield in the table, the user moves the cursor over an entry of the table and then left clicks. Initialy tablesto be
constructed are empty. To add a new row, the user selects afield and then clicks the add button.

. If afieldinthetableis selected and the user clicks the add button, the new row will follow the row containing the
selected field. All existing rows below the inserted row will be moved down.

. If nofieldinthetableis selected and the user clicks the add button, the new row will be at the top of the table, and
al existing rows will be moved down.

To delete arow, the user selects a cell and then clicks the del button. The row containing the selected field will be
removed.

Clicking on the table header clears the current selection of fields. This can be useful if the user wants to add a new row at
the top of thetable, and one of itsfields is already selected.

Family Treetables

Family Treetable is adescription of afamily.

Example:

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/formsGeneral.html (3 of 5) [7/19/2002 4:50:28 PM]

Forms - general notes

— Family Tree -]
Index Lower BEound Upper Bound "
add r 0 how_long - 1
S 0 how_wide - 1
OK Cancel Print I

Each Family Tree table satisfies the following conditions:

. each Index is avariable name unique within the Family Tree,

. each Lower and Upper Bound is an expression,

. each operand in the Lower and Upper Bound expressionsis aliteral, a GIP, or a previously occurring index in the
Family Tree, i.e., an index in arow above the expression.

In each row, the Lower Bound and Upper Bound expressions, when evaluated, give the inclusive limiting values of the
index. Intuitively, one can imagine that afamily tree specifies a nested loop, where the first row gives the loop variable
and bounds of the outermost |oop.

Not every Family Treetableis expandable. If a Family Treetableis fixed, the buttons to add and del ete are omitted.

Itis possible for a Family Tree to occupy acell in atable. If so, then every cell in the column is occupied by a Family
Tree, and all are expandable or al are fixed. An expandable Family Tree is represented by a square button followed by
"Exp Fam Tree" (example), and afixed Family Treeis represented by a square button followed by "Fix Fam Tree"
(example).

If the user double-clicks the button in one of the cells, a Family Tree Form opens for the user to edit. To incorporate the
changes made to the form, the user should close it, and click either the OK or Apply button on the respective mother form.

Type Names

A Type Name is aname of either alanguage-defined type or a user-defined type. The language currently supported by
PGMT is C++. In C++, language-defined type names differ from variable names and can be composed of several names
like unsigned int, long double, etc.

A user-defined type name is a single name. The corresponding type is defined in one of the filesin the Type List.

NestedStrings

A NestedString denotes afamily; all elements of a properly formed NestedString must have the same height.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/formsGeneral.html (4 of 5) [7/19/2002 4:50:28 PM]

Forms - general notes

A NestedString isalist of elements separated by commas and delimited by braces{}. The elementsin the list can be either
expressions or (recursively) NestedStrings. The complete syntax is presented in Format of GSF files section.

Example:

{ 1,5, 3,2} isaNestedString of height 1.
{{1,532},{17},{},{ 4,2} } isaNestedString of height 2.

Note that all non-null NestedString elements of a NestedString must have the same level of nested braces.

A null NestedString of any height is denoted by {}. It implies that for some NestedStrings we can only determine the
minimal height.

Example:
{{{}} {}} isaNestedString whose height must be at least 3, but can be any height greater than 3.

The actual height must be determined from the token height of the place in which the NestedString specifies the initial
value.

. |If the placeis a graph variable, the height must be the same.
. |If the place is a queue, then the height must be one greater, to allow for multiple tokens, each having the specified

token height.

Printing forms

Each of the forms contains the Print button. Clicking it will open adialog asking the user to specify the scaling. Without
scaling down the printed form, it would be greater than the original form and might be greater than one page. To obtain the
resolution similar to that on the screen, the form should be reduced to about 80%. The disposition of objects on the printed

form might dightly differ from that on the original form.

The reduced form is previewed on the screen before the user makes the final decision about printing it.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/formsGeneral.html (5 of 5) [7/19/2002 4:50:28 PM]

Icon and Arc Forms

|con and Arc Forms

In this section we describe how to open the various forms for each icon and for arcs. There are three kinds of icons:
transition icons, place icons, and included graph icons. For each icon, there are three kinds of forms, each of which may be
opened by pointing at the icon and pressing the right mouse button. This opens a pop-up menu from which the user can
select one of three forms associated with the icon. The three forms are the Prototype Form, the Call Form, and the Icon
Arc Form. Finally, thereis an Arc Form for each arc, which specifies how the ports of two respective nodes should be
connected.

|con Prototype Form

Every icon has a Prototype Form. It is possible for several icons to have the same Prototype Form. The Prototype Form for
agiven icon may be opened read-only from the icon pop-up menu. Some Prototype Forms (i.e., for Pack and Unpack
Transitions and for standard Queues and Graph Variables) are read-only, and the operator cannot edit them.

To open and edit an Ordinary Transition Prototype Form or non-standard Place Prototype Form, the operator selects the
desired Prototype Form from the Prototype Menu on the menu bar. To edit the Prototype Form for an Included Graph, the
operator uses the GUI to open the GSF of the underlying graph and edits the Graph Prototype Form for the underlying

graph.

The structure of Prototype Formsis explained in the Exterior Form section.

|con Call Form

Every icon has a unique Call Form. The Call Form identifies the Prototype Form for that icon and specifies the bindings of
the formal arguments specified in the Prototype Form.

To open and edit the Call Form for a given icon, the operator points at the icon, presses the right mouse button, and selects
the Call Form in the pop-up menu. Before an icon's Call Form can be opened, the Prototype Form for the icon must be
identified. If the icon's Prototype Form has not been identified, the GUI opens a pop-up menu with the existing prototype
names in the graph, and asks the user to select the desired prototype name.

. If theiconisaPlace Icon, the Prototype Name hasto be "Queue”, "GVar" or the Prototype Name of an user-

defined non-standard queue or graph variable.

. If theiconisaTransition Icon, the Prototype Name has to be "Pack™, "Unpack", or the Prototype Name of an user-
defined ordinary transition.

. If theiconisan Included Graph Icon, the Prototype Name has to be one of the Prototype Namesin the Included

Graph List.

The form below depicts ageneral Call Form, which coversal kinds of icons. If the prototype has type arguments, mode
arguments and/or associated GIP's, then the form will contain white boxes where the actual values of these items must be
entered.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/int.html (1 of 8) [7/19/2002 4:50:31 PM]

Icon and Arc Forms

. PGMT |||

Call Form

lcon Family Name: |abal
Frototype Hame: MNewProt

lcon Family Trea

add | Index Lowrar bound Uppsr Bound

Actual Typa Argum emnts

Fomal Typs Baze Typs

Actual Mode Argumamnisa

Fomal Height Actual Height Fomal Baza Typs Actual Baze Typs

Actual GIP Bi ndings

Fomal SIF Family Tres “alue |
Intial Yaue
Cueus Token | ndecx: Lower Bound: Upper Bound:
Index Lowwar bound Uppsr bound
VYalua:

Ok Cancal || Apply || Validate Form | Primt

Icon Family Name

The GUI provides a default name of the icon that will be usually changed by the user. The Icon Family Name has to be
unigue among Icon Family Names, Prototype Names and Forma Names in the GUI Graph Prototype Form.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/int.html (2 of 8) [7/19/2002 4:50:31 PM]

Icon and Arc Forms

Prototype Name
The Prototype Name is set by the GUI according to the rules described at the beginning of this section.
Icon Family Tree

A singleicon may represent afamily of icons. If the icon does represent afamily, then a description of the family is
provided in a Family Tree table labeled Icon Family Tree. The number of entry linesin the family table is the same as the

height of the family and the index variable and upper and lower bounds for each level of the tree must be specified.

Each operand in the Lower and Upper Bound Expressionsis a literal number, a Formal GIP with height = 0 in the GUI
Graph Prototype Form, or an index in arow of the Icon Family Tree above the expression.

Actual Type Arguments

There is one row for each Formal Type Argument in the Icon's Prototype Form. In the left column, the GUI lists the
Formal Type Arguments in the Prototype Form of the Icon. In the right column, the user enters a Type Name in each row.

Actual Mode Arguments

There is one row for each Formal Mode Argument in the Prototype Form. In the Formal Height and Formal Base Types
columns, the GUI lists the respective Formal Height and Formal Base Type in the Formal Mode Arguments of the Icon's
Prototype Form. In each Actual Height column, the user enters a non-negative integer. In each Actual Base Type, the user

enters a Type Name.

Actual GIP Bindings

Thereisonerow for each Formal GIP in the Prototype Form.

In the Formal GIPs column, the GUI lists the respective Formal GIPsin the icon's Prototype Form.

Each element in the second column is a Fixed Family Tree with the number of rows equal to the height of the Formal GIP.

Each operand in the Lower and Upper Bound expressions is a non-negative literal number, a Formal GIP with height =0
in the GUI Graph, an index in the Icon Family Tree, or an index in arow above the expression in the same Family Tree.

The Value Field is either an expression or a NestedString.

. |If the user enters a NestedString in the Value column, then the respective Family Tree isignored. Each operand in
the expressionsin the NestedString is aliteral of the Base Type specified for the respective Formal GIP in the
Icon's Prototype Form, a Formal GIP with height = 0 in the GUI Graph Prototype Form, or an index in the Icon
Family Tree.

. Theuser may enter avalue that isthe name of a Formal GIP of the GUI Graph, provided its height and base type
respectively match the height and base type of the Formal GIP of the Icon's Prototype. In this case the respective
Family Tree will be ignored.

Note: Thisis not supported in the current version of the trangator.

http://w3.ugah.uquebec.ca/iglewski/AlT/GUl/last/pgmtHelp/guihelp/int.html (3 of 8) [7/19/2002 4:50:31 PM]

Icon and Arc Forms

. Except as described in the two immediately preceding bullets, the user enters an expression in the Value column.
Each operand in the expression is aliteral number, a Formal GIP with height = 0 in the GUI Graph Prototype
Form, an index in the Icon Family Tree, or an index in the respective Family Tree.

Initial Value
The area below the heading "Initial Value" isused for initializing a place.

. If theiconisatransition or included graph then this area of the screen isinactive (as transitions and included
graph do not have values).

. For aQueue the area may be filled with one or more tokens that will be used to initialize the queue when the graph
is constructed.

. For aGraph Variable this areaisfilled with exactly one token that initializes the graph variable, and so the Token
Index, together with its Lower and Upper Bounds are inactive.

The Lower Bound of the Queue Token Index (if applicable) is"1", read-only.

The Queue Token Index (if applicable) and the fixed table below it comprise a Family Tree. Below the Queue Token
Index, the number of rowsin the Family Tree table is equal to the Actual Height specified in the Actual Mode Argument.
Note: the Prototype Form for a place has exactly one Formal Mode Argument. Thus there is exactly one Actual Height,
which specifies the height of theinitial token(s) in the place.

The Value Field is either an expression or a NestedString.

. If the Entity Type in the Prototype Formis"gvar”, then the user supplies an initial value (Observe that in this case,
the Queue Token Index isinactive).

. |If the Entity Typeis"queue", then the user has the option of supplying an initial value. The Queue Token Index
identifies each of possibly many tokens. The Upper Bound specifies how many tokens, and is 0, by default, to
indicate that the Queue isinitially empty. In this case, al other fields under the heading "Initial Value" are left
blank.

The following rules apply for a queue with at least oneinitial token and for a graph variable, which must be initialized
with exactly one token.

. Each operand in the Lower and Upper Bound expressionsis aliteral number, a Formal GIP with height = 0 in the
GUI Graph, an index in the Icon Family Tree, or an index in arow above the expression.
. |If the user enters a NestedString in the Value field, then the Family Tree, including the Queue Token index (if
applicable), will beignored.
o Each operand in the expressions in the NestedString is aliteral number, a Formal GIP with height =0in
the GUI Graph Prototype Form, or an index in the Icon Family Tree.
o If the Entity Typeis"queue", then the level of nesting in the NestedString is equal to one more than the
Actual Token Height in the Actual Mode Argument.
o If the Entity Typeis"gvar", then the level of nesting in the NestedString is equal to the Actual Token
Height in the Actual Mode Argument.
. Theuser may enter aValue that is the name of a Formal GIP of the GUI Graph, provided its height and base type
respectively match the height and base type of the Actual Mode Argument of the Place specified above in the Call
Form. In this case the Family Tree will be ignored. Assuming that the GIP is intended to provide the value of each

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/int.html (4 of 8) [7/19/2002 4:50:31 PM]

Icon and Arc Forms

token, the Queue Token Index (if applicable) will be retained.
Note: Thisis not supported in the current version of the trangator.

. Except as noted in the two immediately preceding bullets, the user enters an expression in the Valuefield. Then
each operand in this expression is alitera number, a Formal GIP with height = 0 in the Graph Prototype Form, an
index in the Icon Family Tree, or an index in the Initial Value Family Tree.

|lcon Arc Form

The Icon Arc Form for a given icon displays some of the arc information for every arc connected to the selected Icon. The
information includes

. theicon's Port Family Name,
. thelcon Family Name of the other icon (i.e., at the other end of the arc),
. the Port Family Name of the other Icon.

To open the Icon Arc Form for agiven icon, the operator points at the icon, presses the right mouse button, and selects the
Icon Arc Form in the pop-up menu. The Icon Arc Form is read-only.

Example: clicking at the transition icon, wildOne, in the example ex1.gsf

will open the following Icon Arc Form:

http://w3.ugah.uquebec.ca/iglewski/AlT/GUl/last/pgmtHelp/guihelp/int.html (5 of 8) [7/19/2002 4:50:31 PM]

Icon and Arc Forms

. PGMT <

Icon &rc Form

lzan Farnily Mame: wildOne

Imput Ports
Input Faort Farniby Ha...lFr-:-m lzan Farniby Ha...|Fr-:-m Fart Farniby Hame{ Cpen Arc Farmm
feedBadkin Qfeedback CUTPUT [apen ...
passln Win QUTRUT O oepen ...
passin i QUTRUT O oepen ...

Ctpat Ports
Cutput Port Fariby Hl Ta leon Farniby Marme | Ta Port Farniby Marne | Cpen Arc Form |
pass Qut Qout IMFUT O apen ...
feedBackQut Qfeedback IMFUT O apen ...

oK || Print

To view the full Arc Form read-only for any of the connected arcs, the user clicks the respective button in the fourth
column.

Arc Form

The arc form is used to specify connections between families of ports of two icons.

To edit an arc form for agiven arc, the user points at the arc and click the right mouse button. This identifies oneicon at
each end of the arc on the screen. Theicon at the tail end of the arc is the From Icon, and the icon at the head end of the
arcisthe To Icon. Filling out the Arc Form is possible if the prototypes of two icons have been defined. If thisis not the
case, the user will get an error message.

Before the Arc Form of an arc can be opened, the Port Family Names of both icons must be identified. This requires that
the respective Icon's Call Form and Prototype Form have been created and filled out. The reason for this requirement is
that the information in these formsis needed to display the correct table sizes and family indices for each Port Family. If
these forms have not been filled out, or the GUI cannot find two eligibles port names, the GUI produces an error message.

An output port of the From Icon and an input port of the To Icon are eligible to be connected if

. the modes (i.e., the Token Heigt and Base Type) of the two ports (specified in the respective Prototype Forms of
the icons) are the same, and

. the categories of the two Ports (specified in the respective Prototype Forms of the icons) are different (i.e., one
port has Category "place”, and the other is "transition”).

If the Port Family Names have not been identified yet, and there are two or more output ports that may be eligible, or two
or more input ports that may be eligible, the GUI opens a pop-up menu with these port names, and asks the user to select

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/int.html (6 of 8) [7/19/2002 4:50:31 PM]

Icon and Arc Forms

the desired Port Family Name. If both Port Family Names have been identified, the Arc Form is opened.

Note that the user may specify an expression for the Token Ht in the Prototype Form and, in this case, the GUI has no way
to check that the Token Height of the two ports are the same, and that these ports are eligible to be connected.

Example:
— PGMT]
Arc Form
Mested Loop
Index Lowwer bound Lpper bound
add i 0 length - 1
i n 2 width - 1
k n breadth - 1
Connect

Family Mame | Index Assigned Value

From lcon: &in j j
ke k
Qutput Port of the From lcon: QUTPLT
Tolcon: wildQne ke b+ 1
Input Port of the To lcon: passin rs Ijength- 11

Vhen: (j*21/2=0

OK | Cancel | Apphy || Validate Furm| Print|

Note that each instance in an Icon Family with height > 0 may have afamily of Ports with height > 0. To specify
connections between families of ports of two icons we use a 2-dimensional structure presented in the Connect table.

For each family of Portsin an Icon Family, the family indices of both the Icon Family and the Port Family are listed, and
the user provides an integer expression which, when evaluated, assigns the value of the respective index. Each operand in
the expressionsis a literal number, a Formal GIP in the Prototype of the GUI Graph, or an index in an operator-defined
nested loop. Each pass through the innermost |oop establishes a single connection between two Ports that are identified by
the respective values of the family indices. The user may specify a predicate expression that tells whether the connection
should be made.

Nested loop

http://w3.ugah.uquebec.ca/iglewski/AlT/GUl/last/pgmtHelp/guihelp/int.html (7 of 8) [7/19/2002 4:50:31 PM]

Icon and Arc Forms

The Nested Loop isaFamily Tree table. Each expression for aLower or Upper Bound is aliteral number, a Formal GIP
with height = 0 of the GUI Graph, or an index above the expression in the Nested Loop Table.

Connect table

For each Family Name, the Index and Assigned Vaue comprise a fixed table. The number of rowsis equal to the
respective family height. Specifically,

. For eachicon, the family height is the height of the Icon Family Treein the Icon's Call Form. In the Index column
of the Connect Table, the GUI automatically enters the indices of the Icon Family Tree.

. For each Port, the family height is the height of the respective Port Family in the Icon's Prototype Form. In the
Index column of the Connect Table, the GUI automatically enters the indices of the Port Family Tree.

In the expressions specifying Assigned Values, each operand isaliteral number, a Formal GIP with height = 0 of the GUI
Graph, or an index in the Nested L oop.

When expression

The user may define a boolean condition so called when expression that tells whether the connection should be made for
the respective combination of assigned values of the indices in the Nested Loop. The default when expressionis "true”,
i.e., the connection is made.

Each operand in the when expression is aliteral number, a Formal GIP with height = 0 of the GUI Graph, or an index in
the Nested Loop.

Additional constraints
No Port of any instance of an icon may be connected more than once.

No Port of any Icon may be connected if its family is associated with a Graph Port.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/int.html (8 of 8) [7/19/2002 4:50:31 PM]

Exterior Forms

Exterior Forms

The Exterior Menu has forms related to the GUI Graph being edited. The user may select any of these forms to open and
edit:

. Prototype
. Port Association

. Banner

. Typelist
. Included Graph List

Prototype Form

The Prototype Form captures the interface information (i.e., the formal parameters) needed to create an instance of a
Graph, Included Graph, Transition, or Place.

The Prototype Menu has the following items:

. New Ord Tran: Open a new Prototype Form for an Ordinary Transition.

. New Queue: Open a new Prototype Form for a non-standard queue.

. New GVar: Open anew Prototype Form for a non-standard graph variable.

. Operator-defined: Open a sub-menu of existing user-defined Transition and Place Prototype Forms. The user may
select a Prototype Form from this menu to open and edit.

. System-defined: Open a sub-menu of system-defined Prototype Forms: Pack, Unpack, Queue, and GVar. The user
may select one of these Prototype Forms to open read-only. The system-defined Queue and GVar Prototype Forms
specify asingle input port and a single output port (i.e., the port families have height 0).

To open the Prototype Form for the current GUI Graph, the user selects "Prototype” from the Exterior Menu.
To view the Prototype Form read-only for a given icon, the user clicks "Prototype form" in the icon's pop-up menu.

The Prototype Form depicted below includes all the information for all kinds of Prototype Form. In some cases, some of
the information is not relevant and should be disabled. Where thisis the case, we will so indicate.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/ext.html (1 of 11) [7/19/2002 4:50:36 PM]

Exterior Forms

Prototype Form
Frototyps Mamea: Meaw Prot Entity Typ=: tranzition
Forma Type Argumenis
Formal Mame
add
Formal Mode Arguments
Tokan Height (Fomal Mame) | Baza Typs (Fomal Mama)
add
Formal Graph | natanti ation Parameters (Gl Pa)
Mame Heaight (i um bar) | Baza Typs (Actual)
add
Imput Porta
Family HMams Catagory Tokan Ht Baza Typs Family Tras
add |
Output Porta
Family Mamsa Catagory | Takan Ht Baza Typs Family Tras
add
Opean Body OK Cancel || Apply VYalidate Protoiype Primt

The Prototype Forms for special transitions, Pack and Unpack, for standard queues, Queue, and for standard graph
variables, GVar, are special cases of Prototype Forms with system-supplied entriesin their fields. These four Prototype
Forms are read-only. User-defined Place Prototype Forms are discussed in Place Prototypes section.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/ext.html (2 of 11) [7/19/2002 4:50:36 PM]

Exterior Forms

Prototype Name

The Prototype Name has to be unigue among all Prototype Names in the GUI Graph. In particular, for a user-defined
Prototype Form, the Prototype Name may not be Pack, Unpack, Queue, or GVar.

Entity Type

The Entity Typeis"graph", "transition”, "queue", "gvar”, or "inclgraph”, automatically set by the GUI according to the
following rules:

. |If the Prototype Form is the GUI Graph Prototype Form, opened viathe Exterior Menu, the Entity Typeis
"graph”. The Entity Type "graph" indicates that the Prototype Form is associated with the current GUI Graph. This
not to be confused with the Banner Form, where the user may choose between "Main Graph” and "Included

Graph". The choice in the Banner Form indicates that the GUI Graph isto be instantiated either as a Main Graph
(i.e., by the Command Program) or as an Included Graph (i.e., in another graph).

. |If the Prototype Form is associated with one or more iconsin the GUI Graph, the Entity Type reflects the kind of
the associated icons:

o If the Prototype Form is newly created for an Ord Tran, Queue, or GVar by selection from the Prototypes
Menu, then the Entity Typeis "transition”, "queue”, or "gvar”, respectively.

o If the Prototype Form is subsequently opened, the Entity Type is taken from the Parse Tree.

o If the Prototype Form is opened by selection from an Included Graph Icon's pop-up Menu, then the Entity
Typeisnot derived from any element of the parse tree. In this case, the Entity Typeis "inclgraph”. The
Included Graph Icon's Prototype Form is read-only and, except for the Entity Type field, isidentical to the
Prototype Form of the underlying GUI Graph. This underlying GUI Graph isin the respective GSF whose

full pathisfound in the Included Graph List.

Formal Type Arguments

The Formal Type Arguments are unique among V ariable Names in the Prototype Form and Type Names in the GUI Graph
Prototype Form.

Formal Mode Arguments

In each Forma Mode Argument, the Token Height and Base Type are unique among V ariable Names in the Prototype
Form.

Formal Graph Instantiation Parameters (GI Ps)
Each Formal GIP isavariable that represents a token of the specified Height and Base Type. In each Formal GIP

. the nameis unique among Variable Names in the Prototype Form,

. the Base Typeiseither alanguage-defined type (int, float, ...) or a user-defined type that is defined in one of the
filesinthe Type List,

. theHeight isan integer O or greater; if the specified Height is O, then the GIP is a simple variable with the
specified Base Type.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/ext.html (3 of 11) [7/19/2002 4:50:36 PM]

Exterior Forms

Ports
In each of the tables of Input Ports and Output Ports

. the Family Names are unique among Variable Names in the Prototype Form,
. the Category of each port is defined according to the following rules.
o if the Prototype Entity Typeis "transition”, then the Category of each Port is "transition”,
o if the Prototype Entity Typeis"queue" or gvar”, then the Category of each Port is"place”,
o if the Prototype Entity Typeis"graph”, then the Category may be either "transition” or "place”, according
to user choice.
Note: If in the Banner Form of the graph being edited, Main Graph is selected, then all port categories of

the GUI Graph Prototype Form must be "place"”.
o if the Prototype Entity is "inclgraph”, then the Prototype Form is read-only.
. the Token Ht is an expression,
. each Base Typeis either alanguage-defined type or a user-defined type that is defined in one of the filesin the
Typelist.
. Ineach Family Tree
o each index is unique among the indicesin its Family Tree and among all Variable Names in the Prototype
Form. It is not necessary that indices be unique across different Family Trees in the Prototype Form.
o 1n each expression specifying a Lower or Upper Bound, each operand isaliteral number, a Formal GIP
with height = 0 in the same Prototype, or an index in arow above the expression in the same Family Tree.
o If the Prototype Entity Typeis "transition”, then the Height of the Family Tree (i.e., the number of rowsin
the Family Tree table) does not exceed the respective Token Ht.

Body

If the Entity Typeiseither "transition” or "inclgraph”, the Prototype Form contains the button Open Body. Clicking on this
button will open a new window.

. If the Entity Typeis"transition", the window displays the text of the Transition Statement, i.e., the body of a
function which, when called, specifies the function of the transition. The user may assume that the Family Name
of each Input Port and of each Output Port has been declared to be a variable that represents a token with the
specified Height and Base Type. If the specified Height is O, then the variable is a simple variable with the
specified Base Type. Further, when the Transition Statement is called, the Name of each Input Port isinitialized
with the value of the token read from the respective Transition Input Port.

The window isread-only if the Prototype Form is read-only. If the window is editable, it contains the Read File
button. Clicking on the button replaces the contents of the window with the contents of selected file.

Example:

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/ext.html (4 of 11) [7/19/2002 4:50:36 PM]

Exterior Forms

— PGMT

Transition Prototype Name:

Tranzition Statement

PassOn

T " inputData = passin.getData};
T " outputData = passOut.getDatar);

™ copy the data ™/

cutputData [i] = inputData [i];

™ bump the counter ™
feedBackOut = feedBackin = 1;

™ pass on the input token unchanged "'.f|
™ set up the descriptor in the output warkspace ™
passOut.assignFamily (passin.getDescriptord));

™ get the addresses of the leaf arrays ™/

fordint i= 0; i< passin.getMumLeaves();, i++)

Close Read File

Print

If the user modifies the contents of the Transition Statement window and wants to incorporate the changes madein
the form (i.e. update the parse tree), he should close the form and click on either the OK or Apply button of the

Prototype Form.

. If the Entity Typeis"inclgraph", the window displays the graphic layout of the underlying GUI graph whose GSF
isin the respective full path found in the Included Graph List. This graphic layout window is read-only.

Example:

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/ext.html (5 of 11) [7/19/2002 4:50:36 PM]

Exterior Forms

— PGMT |
Included graph "One"®

To edit the underlying GSF, the user opens the GSF in a separate GUI session.

Note: If the Entity Typeis"queue”, or "gvar”, the Open Body button does not exist, because a place has no body.

Place Prototype Form

The Prototype Forms of non-standard queues and graph variables are user-defined. The user may open and define a
Prototype Form for a non-standard queue or graph variable by selecting New Queue or New GVar from the Prototype
Menu. The Place Prototype Form depicted here is a subset of the Prototype form depicted above. Except as noted, the
Place Prototype Form conforms to the syntax and semantics rules for Prototype Forms.

Example of non-standard queue prototype form:

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/ext.html (6 of 11) [7/19/2002 4:50:36 PM]

Exterior Forms

. PGMT |||

Place Prototype Form

Frototyps Mamea: Mew Prot Entity Typ=: queus

Forma Mode Argumant

Taksn Haight (Famal Mama) Bazs Typs (Fomal Mama)
Formal Graph | netanti ation Parametera (Gl Pa)
Mame Haight (i um bar) | Baza Typa [Actual)
add
I nput Port
Family Mamea | Category | Toksn Ht Baza Typs | Family Tras
I FUT Hac= O Exp Family T...
Cutput Port
Family Mamea | Category | Tokan HE | Baze Typs | Family Tras
O UTRPUT Hlacs O Exp Family T...
OK || Cancel | Apply | validate Prutut_l,lpa| Primt

Entity Type

The Entity Typeiseither "queue” or "gvar".

Input and Output Ports

In each of the tables of Input Ports and Output Ports, there is exactly one Port, and the tables are fixed with one row each.

. TheFamily Namesare"INPUT" and "OUTPUT".

. The Category is"place".

. For the Token Ht and Base Type, the GUI repeats the Token Height and Base Type that appear in the Formal
Mode Argument. These specify the mode of the tokens stored in the place.

. Theuser may edit either or both of the Family Treesin the Input and Output Port tables.

Graph Port Associations Form

The Graph Port Associations Form identifies each graph port family with afamily of ports of an icon in the graph.

Example:

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/ext.html (7 of 11) [7/19/2002 4:50:36 PM]

Exterior Forms

. PGMT | _]
Graph Port Associations

Graph Input Ports

Graph Input Part Fariby Name | lezon Farniby Marme | lecon Input Port Farniby Marme
INTEGRATION_GF INTEGRATIOHN INFUT
AMEGLE_GF AMizLE INFUT
LOFREQ@_GF LOFREQ INFUT
WIIMD OWISIZE_GF WM D S IZE INFUT
INFUTDATA_GP INFUTLATA INFUT

Graph Cutpeat Ports

zraph Qutput Port Farmiby Name | lcon Farniby Mame lcon Qutput Port Farniby Hame
CUTPUTDATA_GF CUTPUTDATA QUTFUT

ad Cancel Apply “Walidate Form Prirt

The GUI automaticaly fillsin the left-most column with the Graph Port Family Names of the graph, aslisted in the
respective expandable table of the Graph Prototype Form.

For each Graph Port Family the user enters the Icon Family Name and Port Family Name to be associated with the Graph
Port Family. The following conditions must be respected:

. Thelcon Family Name is the Family Name of some icon in the graph.

. The Port Family Name is the Family Name of some port in the Icon’s Prototype Form.

. No Icon Port Family is associated with more than one Graph Port Family.

. The category of each Graph Port and the associated | con Port are the same category (as specified in the respective
prototype forms).

. Thedirection of the graph port and the icon port are the same (i.e., graph input ports are associated only with icon
input ports, and graph output ports are associated only with icon output ports).

All of the above conditions are validated by the GUI. Additionally, the form has to satisfy the following two conditions
that cannot be, in general, validated by the GUI.

. Themode (i.e., token height and base type) of the Graph Port and the mode of the associated Icon Port are the
same.

. Thefamily tree of each graph port family (specified in the Graph Prototype Form) matches the family tree of the
associated icon port family (specified in the icon's Prototype Form).

Banner Form

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/ext.html (8 of 11) [7/19/2002 4:50:36 PM]

Exterior Forms

The Graph Banner Form is selected from the Exterior Menu. The user provides some general information about the current
graph state file:

. file name,
. author,

. version, and
. purpose

The user aso specifies whether the current graph isamain graph that is called by a command program, or an included
graph that will be incorporated into another graph.

Example:

— PGMT =

Graph Banner

File Marne: [fjupiterhormeliglewskifexamplet. gst

Authar: |Di-:k Stewvens |
Wersion: |1rersin:-n 1 |
Furposea: |t-:- create an exarmple for validating the translator |

(® Main Graph

l:::l Inzluded Graph

7 o] Cance| Apply Frirt

Thefirst lineisread only and is automatically filled in by the gui.

TypeList Form

Type List Form is used to identify user-defined types. Each entry is composed of atype name and afull path of the header
file defining this type name, separated by " @".

Each header file can contain definitions of several user-defined types. However, the only known to the GUI type names are
the names explicitly mentioned in one of the entries of the Type List Form.

If an entry in the form is selected, then the user can use the browse button to select a header file for this entry.

Example:

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/ext.html (9 of 11) [7/19/2002 4:50:36 PM]

Exterior Forms

— PGMT]
Tvpe List

Full Fath of Header File Defining UserDefined Class Definitions
cormplex@hometnanders ofcomplex.h

add

] oK Cance| Apply Frint i

The entriesin the table are automatically sorted by the GUI when either the OK or Apply button is clicked.

A type name cannot be adirect instantiation of a class template. To use atype instance of a class template, the user hasto
define an explicit type (i.e., without template arguments) via typedef in the source defining the user-defined classes. More
information on this subject can be found in Mtool/PGMT Integration document.

Included Graph List Form

Theform lists all graph prototype names used in the current graph. Each row of the table contains the name of an included
graph prototype and the full path of the graph state file containing its definition.

The full path of graph state file can be selected via afile browser.
The entries are sorted by the GUI.

Example:

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/ext.html (10 of 11) [7/19/2002 4:50:36 PM]

Exterior Forms

Included Graph List
Included Graph Prototype Hamel Full Fath of Graph State File
add One fhomefstevens/One. gsf
Threa fhoreistevens/Three. gsf
Tuo fhoredstevens Twgo, gsf

oK Cance| Apply Frint

The entriesin the table are automatically sorted by the GUI when either of OK or Apply buttonsis clicked.

No GUI Graph may contain itself as an Included Graph, either directly or indirectly.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/ext.html (11 of 11) [7/19/2002 4:50:36 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/editing.html
Editing
Editing forms

To maintain coherence of the parse tree, while the user is editing aform, the GUI blocks the user from doing anything that
either results in a change of the parse tree or has the potential to do so. In particular, the user may edit no more than one
form at atime. While editing a given form, the user may view any other form, but may not edit it. Further, while editing a
given form, the user may not add icons or arcs and may not move any icons or in any other way cause the graph display to
change. To complete editing aform in order to perform another action, the user finishes editing the current form by
clicking on one of the three buttons, OK, Apply, or Cancel in the current form.

Clicking on the Apply Button performs the syntax check of every field in the form and reports all errorsto the user. A
blank field is acceptable. If there are no errors, the GUI updates the parse tree to incorporate changes made in the form.

Clicking on the OK Button performs the actions described for Apply and then closes the form. Clicking on the Cancel
Button closes the form without checking against the syntax rules and without making any changes to the parse tree.

Some of the forms contain the Validate Form Button. Clicking on this button performslocal semantic checks. Blank fields
are not acceptable. To make afull validation, the user should select Validate Graph from the Translation menu.

If the user is editing aform and opens, closes, or saves afile, or creates a new file, the GUI first displays a message asking
the user to close the form.

Some information that the user entersin one form can also appear in other forms. When the user edits one form and clicks
either Apply or OK, the GUI closes all opened forms containing the changed information.

Editing graphic elements

Editing graphic elements can be done in four different modes.

Selecting, desel ecting, moving, copying, cutting, and pasting graphic elements can be done in the select mode. To enter the
select mode, choose Select from the Nodes menu.

Inserting new iconsis done in the icon insertion mode. To enter the icon insertion mode, choose Transition, Place, or
Included Graph from the Nodes menu to insert atransition icon, a place icon, or an included graph icon respectively.

Inserting anew arc is donein the arc insertion mode. To enter the arc insertion mode choose Arc from the Nodes menu.

Changing the shape of an arc is done in the arc bends mode. To enter the arc bends mode choose Arc Bends from the
Nodes menu.

Select Mode

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/editing.html (1 of 3) [7/19/2002 4:50:37 PM]

http://w3.uqah.uquebec. caliglewski/Al T/GUI/last/pgmtHel p/guihel plegiiting. htm
Y ou can select one or several objects at once. When one or more objects are selected, the display color changes.
To select an object

To select an object, click it.

Selecting an object deselects any currently selected objects.

To select several objects

Y ou can select several objects at once, or you can add an object to an existing selection.

To select several objects, point outside the objects and drag diagonally to draw a selection border around them.
To add an object to a selection, hold down Shift while you click the object.

To add several objectsto a selection, hold down Shift and drag diagonally to draw a selection border.

To deselect objects

Y ou can deselect one object, several objects, or all selected objects at once.

To deselect the only object selected, click outside the object.

To deselect one of several selected objects, Shift-click the object.

To deselect all selected objects, click on the frame away from any objects.

To move objects

Y ou can move objectsin any direction, or you can constrain the direction to horizontal or vertical.

To move an object, select the object and drag it.

To move the object horizontally or vertically, hold down CTRL and Shift while you drag the object.

To move several objects, select the objects and hold down Shift while you drag them.

To move several objects horizontally or vertically, select the objects and hold down Ctrl and Shift while you drag them.

Arclnsertion Mode

Y ou can draw an arc in either direction between any two iconsif at least one of them is an included graph icon, or between

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/editing.html (2 of 3) [7/19/2002 4:50:37 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/editing.html

aplace icon and atransition icon.

Arc Bends Mode

To add anew bend, click on an arc segment and pull it out.

To remove an existing bend, click with the right button on the bend.

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/editing.html (3 of 3) [7/19/2002 4:50:37 PM]

Validation

Validation

Validating Forms

Any form that is being edited, may be validated by clicking on the Validate Form Button. All syntactic and semantic errors
will be displayed. The validating process can be stopped at any time by clicking on the Stop Validation Button.

In many situations when a syntactic error is detected, a meaningful semantic analysisisimpossible and it will be disabled.

Observe that clicking on the Apply Button or OK Button will only perform syntactic checks in agiven form. This allows
to save agraph with partially filled forms.

Validating the Graph

At any time that no form is being edited, the user may select Validate Graph in the Translation Menu. In response, the GUI
will check all forms of the current GUI graph against the semantics rules and report errors to the user.

In some situations, reporting all errorsisimpossible. For example, if an invalid prototype is found, validating Call Forms
does not make sense and further validation will be stopped.

There are also situations when the GUI does not dispose sufficient information to validate aform, and informs the user by
displaying error warnings. For example, if the user uses a data type different from predefined typesin C++, the GUI
displays the message: "GUI cannot validate the type "t"". During the batch execution, the user can inhibit displaying
warnings with the option "-w".

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/validation.html [7/19/2002 4:50:38 PM]

Trandlation

Trandation

At any time that no form is being edited, the user may select Output C++ in the Translation Menu. In response, the GUI
will first validate the current GUI graph. If there are no errors, the GUI will generate the C++ code for the current GUI
graph according to the Translator Specification.

Before saving the C++ codeto afile, the GUI asks the user for a name of thisfile. The default name is n.h where nisthe
Graph Class Name (specified by the user in the Prototype Name in the Graph Prototype Form).

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/translation.html [7/19/2002 4:50:38 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/misc.html

M iscellaneous

Batch execution

The following parameters are allowed:

-c file.gsf Trandlate the gsf file to C++ code.

-d directory Specify the C++ destination directory.
-h Display the help information.

-v file.gsf Validate the gsf file.

-V Print the version information.

-wW Inhibit all warning messages.

Support for C++

Some of the fields used in Prototype and Call Forms require usage of types and expressions written in a programming
language used by the PGMT software. Currently, PGMT supports the programming language C++. GUI accepts a subset
of C++ data types and expressions. Below, we define the syntax of different C++ constructions used by the GUI.

types

The following C++ types are supported:

char short int long
unsigned char unsigned short unsigned int unsigned long
float double long double

literal numbers

GUI accepts integer and double literals. An integer literal is a sequence of decimal digits. A double literal is a sequence of
decimal digits, possibly empty, followed by a dot and a sequence of decimal digits, possibly empty.

variable names

A variable name is a sequence of letters, digits or underscores starting with aletter or an underscore. There are a number of
identifiers that have a special meaning in gsf files and cannot be used as variable names. They are listed in Appendix A.

expressions
An expression is one of the following:

. variable name
. literal number

http://w3.ugah.uquebec.ca/iglewski/AIT/GUl/last/pgmtHelp/guihelp/misc.html (1 of 4) [7/19/2002 4:50:40 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/misc.html

. unary expression, <operator> <expression>, where <operator> is one of the following:
+ - & ++ - ~ |
. unary expression, <expression> <operator>, where <operator> is one of the following:
* o -
. binary expression, <expression> <operator> <expression>, where <operator> is one of the following:

+ -* [/ N> <> <= == Iz
&& || << > & | ->

. indexed array
. function call

Format of GSF files

The following identifiers are used as keywords and may not be used as variable names:

arc author banner bends capsule
category exterior filename fmly gips
graphtype gvar inclgraph initval inport
input leaf location outport output
place prototype purpose gueue revision
trangition trstmt type unsigned when

The GSF grammar is defined below using the BNF notation:

Non-terminal symbols:

Pgsf ::=capsule{ Banner Exterior Specs}
Arc = arc RangeSeq BendSeq { Link }
Args :=null | Expr | Args COMMA Expr
Assoc ;= Name<=>label . Name; |
Assoc Name <=> |abel . Name;
Banner ::= banner { filename CodeString author CodeString

revision CodeString purpose CodeString
graphtype number ; }
BaseAux :=null | BaseAux , BaseType
BasePrim ::=null | BaseType BaseAux
BaseType ::= Name TypeSeq |
unsigned Name TypeSeq | // C++ dependent
unsigned TypeSeq I/l C++ dependent
BendSeq ::=null | bends PtSeq
Bindings ::= Name = Value; | Bindings Name = Value;
Cat :=null | category transition | category place

http://w3.ugah.uquebec.ca/iglewski/AIT/GUl/last/pgmtHelp/guihelp/misc.html (2 of 4) [7/19/2002 4:50:40 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/misc.html

ClassCall ::= Name TypeSeq
ClassName ::= Name TempPrim
Connect ::= Name ExSeq . Name ExSeq
Expr = /I C++ dependent
Number | FloatNumber | Name | (Expr) |
Expr + Expr | Expr - Expr | Expr * Expr |
Expr / Expr | Expr % Expr | Expr ™ Expr |
Expr > Expr | Expr < Expr | Expr >= Expr |
Expr <= Expr | Expr == Expr | Expr !'= Expr |
Expr && Expr | Expr || Expr | Expr << Expr |
Expr >> Expr | + Expr | - Expr | * Expr |
& Expr | ++ Expr | Expr ++ | -- Expr |
Expr -- | ~ Expr | Expr ? Expr : Expr |
Expr & Expr | Expr | Expr | ! Expr |
Expr [Expr] | Expr (Args) | Expr -> Expr
ExSeq ::=null | ExSeq[Expr]
Exterior ::= exterior { Prototype Pass Pincl Ptype }
Faminit ::=null | fmly (Mode ModeAux)
FamName ::=null | fmly (ForArg ForArgAux)

ForArg ::=<Name, Name>

ForArgAux ::= null | ForArgAux , ForArg

Gips ::=Name: Mode; | GipsName: Mode;
Gos :=null |gips{ Gips}

Gparam :=null | gips{ Bindings}
InclForm ::=inclgraph { Incliden}
Incliden ::= Name @ PathName ; | Incllden Name @ PathName ;
INP :=null |inport { Port}
Instance ::=label RangeSeq location < Location > =
Kind ClassCall Faminit Params;;

I[param ::=null |initval { Value}

Kind ::=transition | place|incgraph

Link ::= Connect -> Connect | Connect -> Connect when Expr
Location ::= number , number

Mode :=<Expr, BaseType>

ModeAux ::=null | ModeAux , Mode

NestAux ::=Expr|{ NestPrim}

NestedString ::={ NestPrim }

NestPrim ::=null | NestPrim NestAux

NodeProto ::= transition { Prototype} | gvar { Prototype} |
queue { Prototype }

OUTP :=null | outport { Port }

Params ::=null | { Gparam Iparam }

Pass ::=null | Pass PortAssoc

Pincl ::=null | InclForm

Points ::= number , number

Port ::= Name Mode RangeSeq Cat ; |
Port Name Mode RangeSeq Cat ;

PortAssoc ::=input { Assoc} | output { Assoc}
Prototype ::= prototype ClassName FamName ;
Gos INP OUTP TrStmt

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/misc.html (3 of 4) [7/19/2002 4:50:40 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/misc.html

PtSeq ::=<Points> | PtSeq < Points >

Ptype :=null | TypeForm

Range ::=Expr: Name: Expr

RangeSeq ::=null | RangeSeq [Range]

Specs ::=null | Specs NodeProto | Specs Instance |
Specs Arc

TempAux ::=null | TempAux , Name

TempPrim ::=null | < Name TempAux >

TrStmt = trstmt CodeString

TypeForm ::=type{ Typelden;}

Typelden ::= Name @ PathName ; | Typelden Name @ PathName;

TypeSeq ::=null | < BaseType BaseAux >

Value ::=RangeSeq leaf [Expr] | NestedString

Terminal symbols:

CodeString ::= a string that startswith '{:', ends with ":}',
and does not contain '}’

FloatNumber ::= a string containing one or more digits with

one dot placed anywhere
Name ::=astring that starts with aletter or underscore,
followed by zero or more letters, numbers, or
underscores
null ::=empty string
Number ::=astring containing one or more digits

PathName ::= astring that starts with ", ends with ™",
and does not contain "'

http://w3.ugah.uquebec.ca/iglewski/AIT/GUl/last/pgmtHelp/guihelp/misc.html (4 of 4) [7/19/2002 4:50:40 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/exampl e.html

Example

This example was designed more to illustrate different formsin the GUI than to do model areal application.

Every icon represents afamily with height >= 0.

. Qinisafamily of queueswith height = 3.
. QfeedBack and wildOne each have family height = 1.
. Qout has family height 0 and is thus a single queue. Qout is a queue with afamily of input ports with height = 2.

PassOn defines the prototype for the transition wildOne. For each transition in the family called wildOne, thereis afamily
of input ports called passin with height = 0. These ports are connected in a strange way to the output ports of the queuesin
the family Qin. When the second index j is even (???), the ports are connected in the order specified by the other indicesi
and k. When the second index j is odd (???), the ports are connected so that the order is reversed for the first index i.

The tokens in the queues Qin and Qout have base type char. The tokens in the queues QfeedBack have base type unsigned
int. Each transition in the family wildOne is connected to a queue in QfeedBack, which serves to count the executions of
the transition. Each queue in QfeedBack isinitialized with atoken whose value is the index of the queue in the family.

In each execution of wildOne, one token is read from each input port connected to a queue in the family Qin. Those tokens
are then assembled into a single token that has family height 2 and produced to the output port passOut, which is
connected to one of the input ports of Qout. When atransition fires, it reads an unsigned integer from its member of the
family of queuesin QfeedBack, adds one, and produces the new value to the same queue.

Qout is asingle queue with afamily of input ports. Thus, Qout stores the tokens in the order that the wildOne transitions
execute.

Exterior Forms

Banner Form

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (1 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

fupiterhormefiglereskifexamplat. gsf
Dick Stewens |
e

to create an example for validating the translator

Included Graph List Form

[|| {[amze]] [Ao]| [Eam]

TypelList Form

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (2 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

Graph Port Associations Form

cxampie{ Input QiniNPUT

Graph Output Port Family Name|lcon Family Narne|icon Output Port Family Name
| OK | |Cancel | | Apply | | Validate Form| |Print |

Graph Prototype Form

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (3 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

fength o |umsignsdint
widh @ lumignedint
Eraadth 0 lumsignedint

| | |
exampleinput [placs 0 char |0 E=xpFamil...

sxample1Cut... O Exp Famil...

Family Tree (examplell nput)

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (4 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

length - 1
2 * width - 1
breadth - 1

Family Tree (examplelOutput)

| con Prototype Forms

Transition Prototype Form for PassOn

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (5 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/l ast/pgmtHel p/guihel p/exampl e.html

PGMT .

Frototyps Mamea: Paz=dn

Prototype Form

Entity Typ=: tranzition

Forma Type Arguments

Farmal Mames
add T
Formal Moda Argumants
——————— Token Height (Fomal Mame) | Baza Typs (Fomal Mame)
add |
Formal Graph | netanti ation Parametera (Gl Pa)
Mame Height (Mumbsr) | EBase Type (Actual) |
add how _ong 0 unsigned int
how _weide 0 unzigned int
Imput Porta
Family Mamsa Catagory Takan Ht Baza Typs | Family Tras
paz=in tranzition] T O Exp Famil...
add faedBackin transzition 0 unszigned int O Exp Famil...
Output Porta
Family Mams Catagory | Tokan Ht Baze Typs | Family Tras |
passcut transition 2 T O Exp Famil...
add feedBackZut [transition 0 unsigned int O Exp Famil...
Opean Body OK Cancel || Apply Validate Protoiype| Deleta| Print

Family Tree (passin)

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (6 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

’7 Iilili

how_long - 1
how_wide - 1

Family Tree (feedBackIn)

Family Tree (passOut)

Family Tree (feedBackOut)

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (7 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/exampl e.html

— Family Tree -]
Index Lower BEound Upper Bound "
add
0 oK Cancel Print

Transition Statement

— PGMT]

Tranzition Statement

Transition Prototype Name: PassOn

I pass on the input token unchanged "'.|'|
™ set up the descriptor in the output workspace ™/
passOut.assignFamily (passin.getDescriptor());

™ get the addresses of the leaf arrays ™7/
T " inputData = passin.getData);
T "outputData = passOut.getDatad);

™ copy the data ™/
for{int i= 0; i< passin.getNurmLeaves(); i++)
outputData [i] = inputData [i];

™ bump the counter ™
feedBackOut = feedBackin = 1;

Close Read File Print

Queue Prototype Form for funnyQueuel

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (8 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/exampl e.html

Place Prototype Form
Frototype Hame: funny@ueuetd Entity Type: queue
Forrmal Mode Argurent
Token Height (Farmal Mame) Base Type (Formal Mame]
height base_type
Formal Sraph Instanti ation Parameters [GIPs]
Marne Height (Murnber) Base Type (Actual)
add how_broad 0 unsigned int
del
Imprt Port

F arnity Narme Categony Token Ht Base Type Farnity Tres

IMFUT place height base_type [Exp Farniby Tres
Cuatprt Port

F arnity Narmme Categony Token Ht Base Type Farnity Tree
QUTRUT place height base_type [Exp Farmity Tree

ok || cancel || spply || walidate F'n:-t-:-t].rpe" Delete | Frint

Family Tree (INPUT)
— Family Tree -]
Index Lower BEound Upper BEound
i i 0 how_broad
del
0 oK Cancel Print I

Family Tree (OUTPUT)

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (9 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

Call Forms

Call Form for transition icon wildOne

wild Cne

FassCn

I I I
oot lpreadth

O Fiz Farniby Tr 2 width
[Fiz Farniby Tr angth

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (10 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

| o || Soncel || ey || vlidsic Form | Print|

Note: The Initial Value section is disabled, because there is no initial value for a Transition Call Form.

Family Tree (how_wide)

Note: length is agraph formal GIP so the Family Tree table for how_long isignored and cannot be edited.

Call Form for queueicon Qin

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (11 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/exampl e.html

PGMT |

Call Form

lcon Family Name: Cin
Frotoiype Hame: Cusus

lcon Family Tres

add Index Lowvsr bBound Uppsar bound
i 0 length - 1
i o 2 * width - 1
del k 0 breadth - 1
Actual Typa Argumants
Fomal Typs Baze Typs
Actual Mode Argumamnisa
Fomal Height Actual Height Fomal Baze Typs Actual Baze Typs
haight] kaze_typs char
Aetual GIP Bi ndinge
Fomal SIF Family Tras Walus

Intia Yalue

Cueusa Token | ndex: Lower Bound: 1 UpperBound: O

Indezx Lowear bound Uppsr bound

Valuea:

OK | cancel || Apply | validate Form || Pri it

Call Form for queueicon Qfeedback

http://w3.ugah.uquebec.ca/iglewski/AIT/GUIl/last/pgmtHelp/guihelp/example.html (12 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/exampl e.html

PGMT

Call Form

lecon Family Name: Qfsadback
Frototype Mame: Jusus

lcon Family Trea

add Index Lowrar bound Uppsr Bound
k 1 breadth
dal
Actual Typa Argum emnts
Fomal Typs Baze Typs
Actual Mode Argumamnisa
Fomal Height Actual Height Fomal Baza Typs Actual Baze Typs
h=ight] baze_tvps unzigned int

Actual GIP Bi ndings

Fomal SIF

Family Tras

Walua

Cueaua Token Index: m

Intial Yalue

Lower Bound: 1 UpperBound: 1

Index Lowwar bound Uppsr bound
Value: k
Ok Cancal || Apply || Validate Form | Primt

Call Form for queueicon Qout

http://w3.ugah.uquebec.ca/iglewski/AIT/GUI/last/pgmtHelp/guihelp/example.html (13 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/exampl e.html

Call Form
lcon Family Name: Qout
Frototype Mame: funnmyliusus
lcon Family Trea
add | Index Lowrar bound Uppsr Bound
dal
Actual Typa Argum emnts
Fomal Typs Baze Typs
Actual Mode Argumamnisa
Fomal Height Actual Height Fomal Baza Typs Actual Baze Typs
h=ight 2 baze_tvps char
fctual GIP Bi ndi nge
Fomal SIF Family Tras Wal ues
how _broad O Fix Family Tres breadth
Intial Yaue
Cueus Token | ndecx: Lower Bound: 1 UppearBound: O
Index Lowwar bound Uppsr bound
Yalua:
Ok Cancal || Apply || Validate Form | Primt

Note: breadth is a graph formal GIP so the Family Tree table for how_broad is ignored and cannot be edited.

|con Arc Forms

http://w3.ugah.uquebec.ca/iglewski/AIT/GUI/last/pgmtHelp/guihelp/example.html (14 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/l ast/pgmtHel p/guihel p/exampl e.html

Icon Arc Form for transition icon wildOne

— PGMT a

Icon Arc Form

lzon Farmily Mame: wildOne

Imput Forts
Input Fort Farniby Ha...lFr-:-m lzon Farniby Ha...lFr-:-m Fart Farniby Hamel Cpen Arc Form
feedBadkin Qfeedback CUTPUT O apen ...
passin ain QUTRUT O oepen ...
passin Qdin QUTPUT [apen ...
Cutpat Ports
Cutput Fort F ammiby Hl To lcon Farniby Marme | To Port Farniby Narne | Cpen Arc Form
passQut ot IMPUT O oepen ...
feadBackOut Qfeedback IMFUT [apen ...
ok || Primt
Icon Arc Form for queueicon Qin

Icon Arc Form

lcon Family Hamea: Qin

Imput Porta

Input Port Family ..IFr-:nm Icon Family...|From Port Family..| Cpsn Arc Fom

Output Porta
Cutput Port Famil..|To lcon Family M ...[Ta Port FamilyM...| Open Arc Form

CUTRUT wildZne Fassin Oop=n ...
CQUTRPUT wildCne Fassln Oop=n ...
Lo Primt

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (15 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

Icon Arc Form for queue icon Qfeedback

Cfeadback

NPT widOne feedBackOut

CUTPUT wildOne [fesdBackin

Icon Arc Form for queue icon Qout

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (16 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/exampl e.html

NPT

Arc Forms

Arc Form Qfeedback -> wildOne

http://w3.ugah.uquebec.cal/iglewski/AIT/GUl/last/pgmtHelp/guihelp/example.html (17 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

Lfeedback
CUTRPUT
wild Cne

feedBackin

0K | cancel | Apply | validate Form | print |

Arc Form wildOne -> Qfeedback

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (18 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

feedBackCut
Lfeedback
INPUT

0K | cancel | Apply | validate Form | print |

Arc Form Qin ->wildOne (1)

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (19 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

length - 1
2 T width - 1
breadth - 1

EE ETE BN e BT

Arc Form Qin -> wildOne (2)

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (20 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

2 *width - 1
breadth - 1

k+1

length-1-1i
]

| OK | Cancel | Apply | Validate Form | Print |

Arc Form wildOne -> Qout

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (21 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

"~ index | Lowerbound | Upper bound _

[on | [Ea[ceml[res n i) |

System supplied prototypes

Transition Prototype Forms

Pack Prototype Form:

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (22 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/l ast/pgmtHel p/guihel p/exampl e.html

- PGMT <]

Prototype

Frototyps Mame: Pack Entity Typ=: tranzition

Forma Type Arguments

Fomal Mamea

Formal Mode Argum ents

Tokan Height (Fomal Mame) | Baza Typs (Fomal Mamea)
height baze_typs

Formal Graph | netanti ation Parametersa Gl Fa)

Mame Height (M um bar) | Baze Type [Actual) |
Imput Porta
Family Mamea Category Tokan Ht | Baza Typs Family Tras

I PUT transition haight baza_typs

READAMOCUMT transition 0 unzign=d int
READCSFFSET [transition 0 unzigned int
CORSUMEAM ... transition 0 unzigned int
COMSUMECF... transition 0 unzigned int

Output Porta
Family Mames Category | Tokan Ht | Baze Typs Family Tres |
QUTPUT transition height+1 baze_typs

L] Frimt

Note that

. theform isread-only so there are no add or delete buttonsin any table,

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (23 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/l ast/pgmtHel p/guihel p/exampl e.html

. the Formal Mode argument shows a"height" and "base _type"; these are used in two ports: INPUT and OUTPUT,

. the Family Tree of every port of the Pack is empty so the cellsin the Family Tree columns are blank,

. the button to open the Body is missing, because the Pack is a special transition and has a non-standard Transition
Statement.

Unpack Prototype Form:
— PGMT <

Prototype

Frototyps Mame: Unpack Entity Typ=: transition

Formal Typea Argumants

Fomal Mamea

Forma Mode Argum ents

Tokan Height (Fomal Mamea) | Baza Typa (Fomal Mame)
haight Eaze_typs
Formal Graph | netanti ation Parametera (Gl Fa)
Mame Height (M um B=r) | Baza Typa [Actual)
I mput Portsa
Family Mamea Category Tokan Ht | Baza Typs Family Tras
I PUT transition haight+1 baze_typs
Output Porta
Family Mamea Category | Tokan Ht | Baze Typa Family Tras
CQUTPUT transition height baze_typs
FRODOUCE transition 0 unzigned int
oK Primt

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (24 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/l ast/pgmtHel p/guihel p/exampl e.html
| | OK || Print|

Note that

. theform isread-only so there are no add or delete buttons in any table,

. the Formal Mode argument shows a"height" and "base type"; these are used in two ports: INPUT and OUTPUT,

. the Family Tree of every port of the Pack is empty so the cellsin the Family Tree columns are blank,

. the button to open the Body is missing, because the Unpack is a special transition and has a non-standard
Transition Statement.

Standard Place Prototype Forms

In the following forms of standard Queue and standard Graph Variable, the Family Tree buttons are missing, because the
Family Trees are empty to indicate that the Port Family Height is 0 and that the ports are single ports.

Standard Queue Prototype Form:

Place Prototype
Frototyps Mamea: Qusus Entity Typ=: queus
Forma Mode Argument
Tokan Height (Fomal Mame) | Baze Typs (Fomal Mama)
haight Eaza_teps
Formal Graph | netanti ation Param aters (Gl Pa)
Mames Height (i um B=r) | Baze Typa [Actual)
Imput Port

Family Mamsa | Category | Toksn Ht | Baza Typs Family Treas

I PUT placs haight baza_typs
Output Port

Family HMams | Category | Tokan H | Baza Typs Family Tras

CUTRUT placs haight Eaza_typs
O Primt

Standard Graph Variable Prototype Form:

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (25 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/example.html

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/example.html (26 of 26) [7/19/2002 4:50:47 PM]

http://w3.ugah.uquebec.caliglewski/Al T/GUI/last/pgmtHel p/guihel p/references.html

1. PGM specification

2. Dick Stevens: Design Notes for GUI Forms

3. Dick Stevens: Specification for the Translator Output
4. Roger Hillson: Mtool/PGMT Integration

http://w3.ugah.uquebec.ca/iglewski/AlIT/GUl/last/pgmtHelp/guihelp/references.html [7/19/2002 4:50:48 PM]

http://www.ait.nrl.navy.mil/pgmt/pgm2.html

	w3.uqah.uquebec.ca
	PGMT/GUI help
	License
	Glossary
	Introduction
	Working with Graph State Files
	Forms - general notes
	Icon and Arc Forms
	Exterior Forms
	http://w3.uqah.uquebec.ca/iglewski/AIT/GUI/last/pgmtHelp/guihelp/editing.html
	Validation
	Translation
	http://w3.uqah.uquebec.ca/iglewski/AIT/GUI/last/pgmtHelp/guihelp/misc.html
	http://w3.uqah.uquebec.ca/iglewski/AIT/GUI/last/pgmtHelp/guihelp/example.html
	http://w3.uqah.uquebec.ca/iglewski/AIT/GUI/last/pgmtHelp/guihelp/references.html

